Hirntumoren sind die häufigste Ursache für krebsbedingte Todesfälle bei Kindern. Das hochgradige Gliom ist der häufigste bösartige Hirntumor im Kindesalter. Auf die Standardbehandlung folgt meist ein therapieresistenter Rückfall und die Erkrankung schreitet fort. Experten gehen davon aus, dass neue Kombinationsbehandlungen die Prognose der betroffenen Kinder verbessern können.
Bislang beschränken sich Kombinationstherapien in der klinischen Praxis meist auf Strahlen- und Chemotherapie. Marc Zuckermann, Gruppenleiter am Hopp-Kindertumorzentrum Heidelberg (KiTZ), setzt dagegen auf multimodale Behandlungsstrategien („4D-Therapie“), die die Resistenz gegen einzelne Behandlungsformen überwinden sollen. Die Theorie ist, dass sich unerwünschte Nebenwirkungen dabei auf verschiedene Zellpopulationen verteilen, wodurch ein großes therapeutisches Fenster entsteht.
Zuckermann will zunächst in einem umfassenden Screening im Labor verschiedene Medikamente mit Strahlentherapie kombinieren und dabei untersuchen, welche Wirkstoffe die Strahlenempfindlichkeit der Krebszellen verstärken. Diese Kombination soll dann in weiteren Schritten mit Gentherapien und mit zellulären Immuntherapien (CAR-T-Zelltherapien) kombiniert werden. Diese multimodalen Ansätze will Zuckermann in bewährten Mausmodellen überprüfen, um bestmöglich vorherzusagen, welche Kombination betroffenen Kindern am besten helfen könnte.
Marc Zuckermann studierte Zellbiologie an der Universität Osnabrück. Für seine Doktorarbeit forschte er von 2012 bis 2016 am DKFZ. Nach einem Auslandsaufenthalt am St. Jude Children’s Research Hospital in Memphis, USA, kehrte er im Jahr 2019 ans DKFZ zurück. Seitdem leitet Marc Zuckermann am DKFZ und am KiTZ die Gruppe „Präklinische Modellierung“ innerhalb der Abteilung Pädiatrische Neuroonkologie.
Nur ein Bruchteil der Krebspatienten profitiert von Krebsimmuntherapien mit so genannten Immun-Checkpoint-Inhibitoren. Diese Situation zu verbessern, ist Ziel der Forschung von Felix Hartmann, Nachwuchsgruppenleiter im DKFZ. Der zelluläre Stoffwechsel hat sich als Schlüsselfaktor für verschiedene Funktionen von Immunzellen erwiesen, z.B. auch für die „Erschöpfung“ von T-Zellen, die dann nicht mehr zur Tumorabwehr beitragen können. Die genauen Zusammenhänge sind allerdings bis heute nicht ausreichend erforscht. Hartmann postuliert, dass Tumoren räumlich definierte Stoffwechsel-Umgebungen, sog „metabolische Nischen“ schaffen, um damit Immunzellen zu unterdrücken.
Um dies zu testen, will er die Stoffwechselzustände von Krebs- und Immunzellen identifizieren und quantifizieren. Mit einer von ihm entwickelten Methode lassen sich solche metabolischen Untersuchungen in einzelnen Zellen direkt an Gewebeproben von menschlichen Tumoren durchführen. Diese Analysen will Hartmann mit weiteren Verfahren wie z.B. der Multiplex-Ionenstrahl-Bildgebung kombinieren, die es ermöglich, eine große Anzahl an Proteinen in den Tumorgeweben sichtbar zu machen. An Tumororganoiden will der Forscher außerdem den Mechanismus der metabolischen Nischenbildung aufdecken.
Hartmanns Ziel ist mit Hilfe dieser Methoden herauszufinden, wie verschiedene Tumoren den Stoffwechsel von Immunzellen beeinflussen, um deren Funktion zu modulieren. Aus dieser Analyse können sich therapeutische Ziele ergeben, die ermöglichen, verschiedene Arten von Krebs mit Immuntherapien erfolgreicher zu behandeln.
Felix Hartmann studierte Molekulare Biotechnologie an der Universität Heidelberg. Für seine Doktorarbeit forschte er von 2012 bis 2016 an der Universität Zürich und wechselte 2017 als Postdoc an die Stanford Universität. Seit Ende 2021 leitet Felix Hartmann am DKFZ die DKTK*-Nachwuchsgruppe Systemimmunologie und Einzelzellbiologie.
* DKTK: Deutsches Konsortium für translationale Krebsforschung