Research focusing on neuroblastoma
Neuroblastoma is the most common pediatric single-entity solid cancer derived from primitive cells of the peripheral sympathetic nervous system. It is characterized by heterogeneous clinical phenotypes ranging from spontaneous regression to malignant progression despite intensive multimodal therapies. The presence of an active telomere maintenance mechanism is associated with aggressive growth and poor outcome in neuroblastoma, while low-risk tumors usually lack a telomere maintenance mechanism. Subsets of high-risk neuroblastomas elongate telomeres either by telomerase activation (as a result of amplified MYCN or rearranged TERT) or by alternative lengthening of telomeres (ALT).
Overall aim of our work is to integrate next-generation molecular diagnostics for a more precise patient risk stratification and to develop molecularly targeted therapies based on a better understanding of the molecular mechanisms underlying neuroblastoma tumorigenesis.

Spotlight - Group Westermann
Single-cell transcriptomic analyses provide insights into normal sympathetic system development
Studies on human adrenal gland development, which may shed light on the cellular neuroblastoma origin, are rare. We have initiated single-cell transcriptomics studies on the normal development of the human adrenal gland and the sympathetic ganglia in order to describe the normal counterparts and potential neuroblastoma cell(s)-of-origin.
Genomic and other molecular analyses in different cancer types have revealed a striking diversity of genomic aberrations, altered signaling pathways and oncogenic processes. We hypothesize that this diversity arises from endogenous factors, including developmental programs and epigenetic states of the originating cells, in conjunction with exogenous factors. A precise definition of the cell-of-origin and differentiation/developmental states during key events is of utmost importance. The aim of this research focus is to identify resurrected developmental programs in individual tumor cells by comparison to normal human embryonic/fetal cells.
A central question of our work is how specific mutations alter the normal development of the tissue of origin. The goal of this research focus is to understand exactly when neuroblastomas begin to form during embryonic development and how benign tumors differ from highly aggressive ones. Our analyses suggest that neuroblastomas likely begin to form as early as the first trimester of pregnancy, across the entire clinical spectrum. Using specific genetic alterations and mathematical models, we are able to reconstruct the developmental history of each individual tumor. This calculation is based on the assumption that genetic alterations accumulate randomly in the genome over time at a constant rate—similar to sand in an hourglass. The accumulation of mutations is thus also referred to as a molecular clock, which is measurable and allows us to draw conclusions about the temporal history of tumor development. Surprisingly, the analyses revealed that neuroblastomas from all risk groups arise in early pregnancy, but differ in the nature and duration of their early genetic evolution (Körber et al., Nature Genetics 2022).
To better understand the onset and development of neuroblastoma, we model key (epi)genetic events, that we have identified in the tumors, in human induced pluripotent stem cells (iPSCs). These iPSCs can be differentiated in the laboratory into various developmental stages of embryonic development. This allows us to test in which cell populations specific (epi)genetic alterations contribute to the formation of neuroblastoma.
Ferroptosis is a form of cell death triggered when a lethal amount of free radicals accumulates within the cell. This occurs when the metabolic systems that regulate the balance of oxygen, iron, amino acids, and polyunsaturated fatty acids fail. Neuroblastoma cells are particularly vulnerable to ferroptosis due to their high metabolic activity. However, cancer cells have developed specific mechanisms to protect themselves from cell death by ferroptosis. The goal of our work is to understand the complex regulatory system in neuroblastoma cells and, by doing so, identify potential targets to selectively trigger ferroptosis and develop new therapeutic concepts. It is also crucial to understand how the regulatory systems differ across the various molecular subtypes of neuroblastoma, leading to different sensitivities to these therapies. Our research on ferroptosis is funded by the German Research Foundation (DFG) as part of the priority program SPP 2306, titled "Ferroptosis: From Molecular Foundations to Clinical Applications."
An important goal of our work for many years has been to identify target molecules in neuroblastoma cells that depend on high activity of the MYC(N) oncogene, since MYC(N) itself cannot easily be therapeutically targeted. Based on a siRNA screen, we identified the inhibition of the CDK12/13/CCNK complex as a potential target. In a drug screening, we identified various chemical substances that specifically target the CDK12/13/CCNK complex. These substances are based on a very similar chemical structure but have different modes of action. Some substances act as classical kinase inhibitors, while others function as so-called molecular glue degraders. These molecules exploit the cell's ubiquitin-proteasome system to selectively degrade their target proteins, thereby rendering them ineffective. Our work is supported within the framework of the international PROTECT project, which is part of the "Cancer Grand Challenges" program. The developed substances are clinically very promising and are being thoroughly tested preclinically for efficacy and safety.
Our group is part of the international project ITCC pediatric cancer data portal, which is an international partnership involving clinical programs spanning seven nations aiming to aggregate and harmonize genomic data from over 6000 pediatric cancer cases.
For more information see the project website: https://www.pedcanportal.eu/
- Körber, V., S. A. Stainczyk, R. Kurilov, K. O. Henrich, B. Hero, B. Brors, F. Westermann* and T. Höfer* (2023). ‘Neuroblastoma arises in early fetal development and its evolutionary duration predicts outcome.’ Nature Genetics 55(4): 619-630.
*shared last Author - Alborzinia, H., A.F. Florez, S. Kreth, L.M. Bruckner, U. Yildiz, M. Gartlgruber, D.I. Odoni, G. Poschet, K. Garbowicz, C. Shao, C. Klein, J. Meier, P. Zeisberger, M. Nadler-Holly, M. Ziehm, F. Paul, J. Burhenne, E. Bell, M. Shaikhkarami, R. Wurth, S.A. Stainczyk, E.M. Wecht, J. Kreth, M. Buttner, N. Ishaque, M. Schlesner, B. Nicke, C. Stresemann, M. Llamazares-Prada, J.H. Reiling, M. Fischer, I. Amit, M. Selbach, C. Herrmann, S. Wolfl, K.O. Henrich, T. Hofer, A. Trumpp, and F. Westermann, 'MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis'.Nat Cancer, 2022. 3(4): p. 471-485.
- Jansky, S., A. K. Sharma, V. Körber, A. Quintero, U. H. Toprak, E. M. Wecht, M. Gartlgruber, A. Greco, E. Chomsky, T. G. P. Grünewald, K.-O. Henrich, A. Tanay, C. Herrmann, T. Höfer and F. Westermann (2021). 'Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma.' Nature Genetics 2021 May;53(5):683-693.
- Hartlieb, S. A., L. Sieverling, M. Nadler-Holly, M. Ziehm, U. H. Toprak, C. Herrmann, N. Ishaque, K. Okonechnikov, M. Gartlgruber, Y.-G. Park, E. M. Wecht, L. Savelyeva, K.-O. Henrich, C. Rosswog, M. Fischer, B. Hero, D. T. W. Jones, E. Pfaff, O. Witt, S. M. Pfister, R. Volckmann, J. Koster, K. Kiesel, K. Rippe, S. Taschner-Mandl, P. Ambros, B. Brors, M. Selbach, L. Feuerbach and F. Westermann (2021). 'Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome.' Nature Communications 12(1): 1269.
- Gartlgruber, M., A. K. Sharma, A. Quintero, D. Dreidax, S. Jansky, Y.-G. Park, S. Kreth, J. Meder, D. Doncevic, P. Saary, U. H. Toprak, N. Ishaque, E. Afanasyeva, E. Wecht, J. Koster, R. Versteeg, T. G. P. Grünewald, D. T. W. Jones, S. M. Pfister, K.-O. Henrich, J. van Nes, C. Herrmann* and F. Westermann* (2021). 'Super enhancers define regulatory subtypes and cell identity in neuroblastoma.' Nat Cancer 2(1): 114-128. *equal contribution
- Schmitt-Hoffner F, van Rijn S, Toprak UH, Mauermann M, Rosemann F, Heit-Mondrzyk A, Hubner JM, Camgoz A, Hartlieb S, Pfister SM, Henrich KO, Westermann F*, Kool M* (2021) 'FOXR2 Stabilizes MYCN Protein and Identifies Non-MYCN-Amplified Neuroblastoma Patients With Unfavorable Outcome'. Journal of Clinical Oncology 39 (29):3217-3228. *equal contribution
- Jones, D. T. W., A. Banito, T. G. P. Grunewald, M. Haber, N. Jager, M. Kool, T. Milde, J. J. Molenaar, A. Nabbi, T. J. Pugh, G. Schleiermacher, M. A. Smith, F. Westermann and S. M. Pfister. 2019. 'Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours', Nat Rev Cancer, 19: 420-38.
- Ackermann, S., M. Cartolano, B. Hero, A. Welte, Y. Kahlert, A. Roderwieser, C. Bartenhagen, E. Walter, J. Gecht, L. Kerschke, R. Volland, R. Menon, J. M. Heuckmann, M. Gartlgruber, S. Hartlieb, K. O. Henrich, K. Okonechnikov, J. Altmuller, P. Nurnberg, S. Lefever, B. de Wilde, F. Sand, F. Ikram, C. Rosswog, J. Fischer, J. Theissen, F. Hertwig, A. D. Singhi, T. Simon, W. Vogel, S. Perner, B. Krug, M. Schmidt, S. Rahmann, V. Achter, U. Lang, C. Vokuhl, M. Ortmann, R. Buttner, A. Eggert, F. Speleman, R. J. O'Sullivan, R. K. Thomas, F. Berthold, J. Vandesompele, A. Schramm*, F. Westermann*, J. H. Schulte*, M. Peifer* and M. Fischer* (2018). A mechanistic classification of clinical phenotypes in neuroblastoma. Science 362(6419): 1165-1170. *equal contribution
- Ryl, T., E. E. Kuchen, E. Bell, C. Shao, A. F. Florez, G. Monke, S. Gogolin, M. Friedrich, F. Lamprecht, F. Westermann* and T. Hofer* (2017). Cell-Cycle Position of Single MYC-Driven Cancer Cells Dictates Their Susceptibility to a Chemotherapeutic Drug. Cell Syst5(3): 237-250 e238. *equal contribution
- Henrich, K. O., S. Bender, M. Saadati, D. Dreidax, M. Gartlgruber, C. Shao, C. Herrmann, M. Wiesenfarth, M. Parzonka, L. Wehrmann, M. Fischer, D. J. Duffy, E. Bell, A. Torkov, P. Schmezer, C. Plass, T. Hofer, A. Benner, S. M. Pfister and F. Westermann (2016). Integrative Genome-Scale Analysis Identifies Epigenetic Mechanisms of Transcriptional Deregulation in Unfavorable Neuroblastomas. Cancer Res76(18): 5523-5537.
- Peifer, M., F. Hertwig, F. Roels, D. Dreidax, M. Gartlgruber, R. Menon, A. Kramer, J. L. Roncaioli, F. Sand, J. M. Heuckmann, F. Ikram, R. Schmidt, S. Ackermann, A. Engesser, Y. Kahlert, W. Vogel, J. Altmuller, P. Nurnberg, J. Thierry-Mieg, D. Thierry-Mieg, A. Mariappan, S. Heynck, E. Mariotti, K. O. Henrich, C. Gloeckner, G. Bosco, I. Leuschner, M. R. Schweiger, L. Savelyeva, S. C. Watkins, C. Shao, E. Bell, T. Hofer, V. Achter, U. Lang, J. Theissen, R. Volland, M. Saadati, A. Eggert, B. de Wilde, F. Berthold, Z. Peng, C. Zhao, L. Shi, M. Ortmann, R. Buttner, S. Perner, B. Hero, A. Schramm, J. H. Schulte, C. Herrmann, R. J. O'Sullivan, F. Westermann*, R. K. Thomas* and M. Fischer* (2015). "elomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526(7575): 700-704. * equal contribution
- PD Dr. Frank Westermann (Division Head)
- Dr. Kai-Oliver Henrich (Senior scientist)
- Dr. Sina Kreth (Senior scientist)
- Dr. Anand Mayakonda (Group leader, Bioinformatics)
- Dr. Sabine Stainczyk (Project manager)
- Cedar Schloo (PhD student)
- Pravin Velmurugan (PhD student)
- Ilayda Özel (PhD student)
- Dr. Michael Müller (MD/PhD student)
- Pascal Kohmann (MD student)
- Yeo-Eun Yi (MD student)
- Maximilia Eggle (MD student)
- Young-Gyu Park (Lab manager)
- Elisa Maria Wecht (Bioengineer)
- Michelle Müller (Trainee lab technician)
- Manas Segal (Master student)
- Adrianna Podolak (Master student)

Postal address:
German Cancer Research Center
Div. Translational Neuroblastoma Research / B087
Im Neuenheimer Feld 280
D- 69120 Heidelberg
Germany